您的位置:法律快车 > 法律知识 > 工程纠纷 > 建设工程勘察设计纠纷 > 高层建筑地下室基坑支护工程结构设计与施工处理

高层建筑地下室基坑支护工程结构设计与施工处理

法律快车官方整理 更新时间: 2019-11-27 23:55:02 人浏览

导读:

摘要:本文结合工程实例,详细阐述了高层建筑地下室基坑支护结构设计处理与施工监测措施,探讨了在场地条件限制下,采用钻孔桩和钢板桩,钢筋混凝土水平支撑和工字钢水平支撑两种不同的支护结构体系结构设计要点和科学验算,对其施工技术进行了扼要介绍,对

  摘 要:本文结合工程实例,详细阐述了高层建筑地下室基坑支护结构设计处理与施工监测措施,探讨了在场地条件限制下,采用钻孔桩和钢板桩,钢筋混凝土水平支撑和工字钢水平支撑两种不同的支护结构体系结构设计要点和科学验算,对其施工技术进行了扼要介绍,对支护结构施工效果进行了监测和评析。

  关键词:基坑支护; 结构设计; 支撑; 监测

  

  1工程概况

  

  湖南某建筑工程东面为小区道路,距路边约20m;南面为单层临建某酒店,间距约5.5m,该临建基础采用φ600喷粉桩,桩长约15m,但现场观察有部分墙体有不同程度的开裂,是基础不均匀沉降引起的,如果地下室深基坑支护结构有较大变化,就会对该酒店造成较大不利影响;西面为围墙,距离约10m,北面是八层宿舍楼,间距约13m。该建筑物占地成矩形,长55.52m,宽18.5m。总建筑面积约15500m2,楼高15层,设一层地下室,地下室层高分别为4.4m和3.4m,但外露0.9m在地面上。场地自然标高约为-0.90m,地下室基础承台垫层底标高分别为-6.4m和-7.35m,即地下室挖土深度分别为5.5m及6.45m,具体布置详见图1。

  

  2地质条件

  

  按地质钻探资料提示,地质情况按孔深分层如下:0~3.7m为杂填土,松散;3.7~16.7m为淤泥质粘土,饱和流塑;16.7~24.1m为中细砂角砾层,饱和,中细砂松散,角砾稍密;24.1~26.6m为粉质粘土,饱和硬塑;26.6~29.3m为粉质土层,湿坚硬;29.3~55.5m为强风化花岗片麻岩。地下水位较高,地表下约0.84m。

  

  3基坑支护结构设计方案的选择

  

  根据该建筑物地形及钻探资料,综合分析该地下基坑有如下几个特点:

  1)基坑开挖深度大。

  2)基坑开挖深度范围内是杂填土、淤泥,土性差;地下水位较高。

  3)地下室南面距某酒店只有5.5m,且酒店有约3.0宽洗车槽场地及海鲜水池设在此5.5m范围内。钻孔桩,喷粉桩等机械无法靠近施工。并且一定要保证酒店正常营业,地下室施工时要保证该酒店建筑物的安全。

  通过对多种方案综合分析,最后确定地下室基坑南面采用拉森Ⅲ型钢板桩围护,其余三面采用钻孔桩φ800、φ1100围护,钻孔桩外侧采用φ500、φ400喷粉桩联成止水帷幕。钻孔桩除基坑底为-7.35m部分采用两层水平支撑外,其余钻孔桩均采用一层水平支撑设计,钢板桩采用两层水平支撑设计。第一层支撑体系采用钢筋混凝土梁(其中钢板桩仍使用HK300C工字钢作腰梁,节点利用焊接钢筋锚入支撑混凝土中),中间设φ800钻孔支承桩。第二层支撑体系采用HK300C工字钢。由于部分基础承台阻挡节在二层支撑的支撑桩上,考虑到不能拖延加设支撑的时间,因而先加设支撑,然后支撑与承台混凝土一起浇筑(见图2、图3)。

  此设计方案本着“安全、经济”的原则,一方面采用钻孔桩及钢筋混凝土支撑,经济合理,节省工程开支,又能保证基坑支护结构有足够的刚度和整体性;另一方面,钢板桩可接驳加长,使桩锤能悬空施打板桩,以解决场地限制问题;另外,钢板桩的抗渗性能较好,钢支撑安拆方便,施工速度快,且钢板及钢支撑可重复使用。

  

  4支护结构设计的验算取值

  

  4.1钻孔桩的计算(按等值梁法计算)

  4.1.1 r、Ck、ψk按20m范围内的加权平均值计算,求得:r=15.9Kn/m,ψk=120;主动土压力系数Ka=tg2(45-12/2)=0.66;被动土压力系数Kp=tg2(45+12/2)=1.52;查表得K=1.28;eAh=rhKa=15.9×5.5×0.66=57.7kN/m2;eAq=qKa=2.64 kN/m2;计算简图见图4。 [page]

  4.1.2基坑面以下支护结构的反弯点取在土压力零的d点,视为一个等值梁的一个铰支点,计算桩上土压力强度等于零的点离基坑底面下的距离为:y=Pb/r(K·Kp-Ka)=2.94m。

  4.1.3按简支梁计算等值梁的两支点反力,求得:Po=127.3kN/m,Ra=134.6kN/m。

  4.1.4计算钻孔桩最小入土深度to=X+Y,X=10m,求得:to=12.94m;t=1.13×to=14.62m;L=h+t=5.5+14.62=20.12m。综合考虑桩长取L=20m。

  4.1.5按剪力为零处弯矩最大,求得最大弯距:Mmax=246.8kN/m。

  4.1.6采用φ800径钻孔桩,每隔1100mm布置,最大弯矩设计值:Mmax=246.8×1.1×1.2=325.8 kN/m桩混凝土等级为C25,通过常规方法计算,钻孔桩选配16φ20(对称配筋,承受最大弯矩每侧配密箍φ8@250)。

  4.2水平支撑GL1的截面设计

  水平支撑GL1的截面尺寸定为500×900mm,作用于GL1的竖向荷载包括GL1的结构自重g=1.25kN/m和支撑顶面的施工荷载q=9.7kN/m2,作用在支撑结构上的水平力包括由土压力和坑外地面荷载引起的围护墙对腰梁QL1的侧向力。可按围护墙沿腰梁长度方向分布的水平乘以支撑中心距确定,即支撑的轴向力为NO=7.5Ra=7.5×134.6=1009.5kN。

  水平支撑GL1按偏心受压构件计算。取内力标准值综合系数为1.2,则GL1上的弯矩M=1.2×(g+q)lo2/8=219.1kN/m;轴力为N=1.2No=1211.4Kn,为了构造简便,GL1采用对称截面配筋,经按常规方法计算,GL1上下各选配6φ25,箍φ8@200(四肢)。

  4.3腰梁QL1的截面设计

  QL1梁的截面尺寸定为500×800mm,围护墙沿QL1梁长度方向分布的水平反力为q=Ra=134.6 kN/m,考虑八字撑的影响,QL1梁的计算跨度按规范取lo=(l+l1)/2=5.0m,QL1梁按连续梁考虑。查表知Mmax=0.107qlo2×1.2=504.75kN/m,最大剪力Qmax=0.607,qlo=408.5kN。通过正截面承载力计算及斜截面抗能力计算,选配6φ25(每侧),箍φ8@200(四肢)。

  4.4工字钢I30的强度验算

  查表Wx=472.3×103mm2;(f)=215Mpa,得f=Mmax / Wx=106.9Mpa<(f)),所以,采用I30工字钢偏于安全。

  4.5钢板桩的计算

  基坑深6.5m,经验算是一层内支撑不满足要求,为此要用第二层内支支撑。采用现在拉森Ⅲ型钢板桩,其截面特性:Wx=1600×103;f=200N/mm2;最大弯矩设计值:Mmax=1.2×189.2=227.04kNm/m;f=Mmax / Wx=142﹤200N/mm2;考虑到现有钢板桩规格等因素,经验算桩长设计为20m,保证深基坑支护结构安全。

4.6第二道腰梁QL2的截面设计

  设计采用H钢HK300C,其截面特征值:A=225.1×102mm2;Ix=40948×104mm4;I y=13734×104mm4;Wx=2559×103mm3;Wy=900×103mm3;ix=135mm;iy=78mm;沿QL2梁上分布水平力q=1.2×243.2=291.8kN/m;M=0.107qLo2=780.7kNm;f=M / Wx=305<315N/mm2。

  4.7第二层水平支撑QL2截面设计

  GL2梁采用HK300C钢梁,其自重q=1.77kN/m;自重产生弯矩M=22.2 kN/m;轴向力No=7.5RB=2188.8Kn;ε=M·A/N;W=0.089<30;λ=lo/iy=117;ψb=0.374;f=2 =260N/mm2﹤315 N/mm2。

  以上结构设计理论值经验算,符合设计规范要求。

  

  5基坑支护结构的施工处理措施要点

  

  5.1钢板桩的施工

  为避免施工打工程桩时震动及土壤挤压对酒店的基础影响,所以靠近酒店(平行于A轴)的钢板在工程桩施工前先打,打完钢板桩后在板桩背后做排水沟。

  5.2钻孔桩及喷粉桩施工

  全部钻孔桩均在工程桩完成后才进行钻孔施工,钻孔桩采用“跳打”的方式施工。喷粉桩按钻孔桩的施工进度分段插入施工。

  5.3挖土施工及支撑的设置和拆除

  5.3.1钻孔桩完成后,降土约1.3m深(即支撑梁面标高-2.2m),制作第一层支撑,该层支撑完成后大面积回填300mm厚土,支撑面为不少于300mm厚的准石粉石渣,这样一方面保护支撑不被机械压坏,另一方面有利于运泥车在场上行走。 [page]

  5.3.2地下室大面积降土时,根据加设第一层支撑后,未加设第二层支撑之前,保证钢板桩安全的验算挖土深度来开挖土方,并且通过研究核算决定,除坑底设计标高为-7.35m的部分和靠A轴至钢板桩的范围内挖土至-5.9m深,并按I-I剖面图所示在靠近钢板桩留设土台外,其余部位均大面积降土至标高-6.4m。这样,通过预留土台,增加被动土压力的土坑力,保证钢板桩的安全,充分利用机械挖土,加快施工速度。实践证明该方法是可行的,但不同的土质其留设的土台的宽度不同。

  5.3.3第二层支撑应在挖土后两天内加设完成,不能拖延时间,保证整个支护结构安全。

  5.3.4全部桩承台施工完毕后,用石粉、石渣将基坑回填至于-5.9m处,这样,使整个基坑底回复于一层支撑的深度,然后拆除第二层支撑,继续填土至能施工地下室底板为止。

  5.3.5第一层支撑(-2.2m)待±0.00楼面施工完毕,围堰桩与地下室外壁回填土方至-3.00标高外才拆除。

  5.4降排水处理措施

  基坑上部外围采用集水井和排水沟联合排水,虽然钢板桩及粉喷桩止水帷幕抗渗性能较好,但为防止基坑开挖时的雨水、少量渗水及土层含水量的影响,基坑底四周共设8个集水井,井壁用砖砌筑,但砖缝必须疏水,井内径为1.0m,井底标高比施工面低0.8m,井内设潜水泵,集水井用排水沟纵横联接。这样,由排水沟、集水井和抽水设备组成一个简易的降排水系统将地下水位降低至6.0m以下。

  5.5钢板桩的回收

  完成±0.00楼面,全部支撑拆除后,采用吊车在A~B轴的楼面行车回收钢板桩。

  

  6施工监测

  

  为及时掌握基坑支护工程的变化动态,对该项工程采取专门监测,对所定的监测内容定时进行观测,印制标准表格,进行数据整理,绘制位移(沉降)-时间坐标图,以观察各参数随时间的变化趋势,及时反馈信息,指导土方开挖和后续工程施工。

  观察项目包括:①观察南面酒店及北面八层宿舍楼的轴线标高变化,在靠近基坑支护工程的墙转角及中间各设四个三角标志;②观察东面小区道路及西面围墙的标高位移变化,各设两个标志;③钢板桩墙及钻孔桩墙每隔15m设一点,观察水平位移和垂直度。

  监测结果表明:从挖土到地下室工程完工,共进行18次监测,在整个监测过程中,围堰的位移、倾斜、支撑变化均正常,周围建筑物、道路、管线安全。主要监测结果如下:①南面酒店的轴线无变化,最大沉降量为3mm。②东面小区道路及西面围墙无明显变化。③钢板桩最大倾斜13mm,最大移位为18mm;钻孔桩的最大位移为4mm,无明显倾斜面。监测结果也说明此基坑支护结构设计方案是十分成功的,并且说明采用钢板桩和钻孔桩,钢支撑和钢筋砼支撑所组成的基坑支护结构,刚度及整体性良好。

  

  7基坑支护结构技术经济分析

  

  该基坑支护结构的总造价约为252万元,总设计基坑支护长度为156.95m,平均每延长米的费用为1.6万。基坑支护结构施工工期为52d。这对于主要土层内磨擦角仅为9°且挖土深度超过6m的地下室基坑支护工程来说是比较经济和省时的。

  

  8结论与设计体会

  

  8.1地下室基坑支护结构的设计必须满足强度和变形两个方面的要求,特别是变形问题。

  8.2针对不同的情况,采用因地制宜的围护措施,不仅能达到围护目的,而且经济省时。本工程基坑围护针对不同现场情况,不同开挖深度,综合采用了钻孔桩、钢板桩、卸土、挖土预留土台、钢筋混凝土内支撑和钢内支撑等方法,即达到设计的目的,而且围护费也合理。

  8.3内支撑的设置不仅满足整个支护结构计算内力的合理性,同时还要为方便施工创造条件。本工程设上、下两层支撑均采用对撑及角撑,不仅满足设计内力要求,而且有利于机械挖土,且第二层支撑采用工字钢,用电焊联接,施工灵活方便,缩短工期;工字钢可回收重复使用,降低基坑支护费用。 [page]

  8.4钢支撑与工程基础承台一起浇筑,安全性大大提高,且不影响承台受力,加快施工速度。

  8.5对基坑支护结构及周围建筑物的监测,实行信息化施工,不仅使施工具有科学性,确保施工安全,也为优化设计合理组织施工提供可靠依据,节省了工程造价。

  

  参考文献:

  1 基坑土钉支护技术规程.CECS96197.北京:中国建筑工业出版社.

  2 建筑地基基础设计规范.GB50007-2002.北京:中国建筑工业出版社,2002.

  3 秦四海.深基坑工程优化设计M.中国地震出版社.

  4 刘建航,侯学渊.基坑工程手册M.中国建筑工业出版社.

声明:该作品系作者结合法律法规,政府官网及互联网相关知识整合,如若内容错误请通过【投诉】功能联系删除.

相关知识推荐